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A b s t r a c t

Introduction: To elucidate the candidate biomarkers involved in the patho-
genesis process of heart failure (HF) via analysis of differentially expressed 
genes (DEGs) of the dataset from the Gene Expression Omnibus (GEO). 
Material and methods: The GSE76701 gene expression profiles regarding 
the HF and control subjects were respectively analysed. Briefly, DEGs were 
firstly identified and subjected to Cytoscape plug-in ClueGO + CluePedia and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. 
A protein-protein interaction (PPI) network was then built to analyse the in-
teraction between DEGs, followed by the construction of an interaction net-
work by combining with hub genes with the targeted miRNA genes of DEGs 
to identify the key molecules of HF. In addition, potential drugs targeting key 
DEGs were sought using the drug-gene interaction database (DGIdb), and 
a drug-mRNA-miRNA interaction network was also constructed. 
Results: A  total of 489 DEGs were verified between HF and control, which 
mainly enriched in type I  interferon and leukocyte migration according to 
molecular function. Significantly increased levels of GAPDH, GALM1, MMP9, 
CCL5, and GNAL2 were found in the HF setting and were identified as 
the hub genes based on the PPI network. Furthermore, according to the 
drug-mRNA-miRNA network, FCGR2B, CCND1, and NF-κb, as well as corre-
sponding miRNA-605-5p, miRNA-147a, and miRNA-671-5p were identified 
as the drug targets of HF.
Conclusions: The hub genes GAPDH, GALM1, MMP9, CCL5, and GNAL2 were 
significantly increased in HF. miRNA-605-5p, miRNA-147a, and miRNA-671-5p  
were predicted as the drug target-interacted gene-miRNA of HF.

Key words: heart failure, differentially expressed gene, enrichment 
analysis, PPI network, drug-mRNA-miRNA network. 

Introduction

Heart failure (HF), caused by the insufficient supply of oxygenated 
blood to the heart and thereby resulting in hypertrophied heart without 
normal functions, is a major cause of death in the world, especially in an 
aging population [1]. Multiple complications such as myocardial infarc-
tion [2] are presented in the setting of HF, with the number of affected 
subjects reaching more than 40 million globally [3]. Many novel drugs and 
new treatment methods for HF have been studied and applied in clinical 
treatment [4, 5]. Early detection of HF is critical for the management 
of this debilitating disease [6], but the involved molecular mechanisms 
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are not completely understood and biomarkers for 
early diagnosis remain controversial. 

In 2014, Oka et al. [7] elaborated on the pathol-
ogy and molecular mechanisms of HF: angiogene-
sis increased the endothelium-derived NO release, 
resulting in degradation of regulator of G-protein 
signalling 4 (RGS4), and activated the PI3Kγ/Akt/
mTORC1 (phosphatidylinositol 3-kinase/Akt/mam-
malian target of rapamycin C1) pathway, which 
finally induced myocardial hypertrophy. Then, hy-
pertrophic responses inversely induced myocardial 
angiogenesis by overexpressed vascular endotheli-
al growth factors (VEGFs) and by inhibition of the 
PI3Kγ/Akt/mTORC1 pathway. Also, there is obvious 
accumulation of p53 in hypertrophied myocardium 
of HF [7–9]. Biochemical markers that have been 
validated and are usually used in diagnosis and 
prognosis of HF mainly contain B-type natriuretic 
peptide and N-terminal pro-B-type natriuretic pep-
tide [10–12]. In addition, single nucleotide polymor-
phisms (SNPs) have been reported to be signifi-
cantly correlated with HF [13, 14]. Despite intensive 
study in HF pathogenesis and therapies, the inci-
dence and recurrence rate remain high, resulting in 
physical suffering and economic costs [15]. 

In the present study, using the microarray 
GSE76701 datasets, differentially expressed genes 
(DEGs) were firstly identified. Then, via construction 
of the enrichment analysis, protein-protein interac-
tion (PPI) network, and drug-mRNA-miRNA interac-
tion network, the analysis of mRNA profiles allowed 
us to better understand the effect of DEGs and re-
lated miRNA on the potential pathogenesis of HF.

Material and methods

Data sources and preprocessing

Gene profiles of GSE76701 [16] were obtained 
from the National Centre of Biotechnology Infor-
mation (NCBI) Gene Expression Omnibus data-
base (GEO). GSE76701 was processed on Affymet-
rix Human Genome U133 Plus 2.0 Array (GPL570). 
GSE76701 contained 4 HF and 4 normal controls, 
and the mRNA was isolated from left ventricular 
tissue for microarray analysis. 

For preprocessing, text files (.txt) from GSE76701 
were collected, and probe IDs were converted to 
gene symbols according to the annotation file. 
When multiple probes matched the same gene 
symbol, the average value of the probes was taken 
as the gene expression level. Unmatched probes 
were excluded from this study. 

Screening of differentially expressed genes 

For DEGs between HF and control, the p-value 
and logarithmic fold change (log2FC) were cal-
culated using a  freely available limma package 
(http://bioconductor.org/packages/release/bioc/

html/limma.html, version 3.26.9) [17]. DEGs were 
determined by the threshold of p-value < 0.05 and 
|log

2FC| > 0.585. 

Bidirectional hierarchical clustering analysis 
of differentially expressed genes 

Hierarchical clustering is usually used to dis-
cover the closest associations that exist between 
gene profiles and samples [18]. Generally, even in 
the same tissue, there are significant differences 
in gene profiles between disease states and nor-
mal. To analyse whether these DEGs would seg-
regate the samples into 2 distinct clusters, bidi-
rectional hierarchical clustering was conducted by 
‘pheatmap’ package (version 1.0.8) using Euclidi-
an distance function [19]. 

Enrichment analyses of differentially 
expressed genes

Based on the Cytoscape plug-in ClueGO + Clue-
Pedia [PMID: 19237447], the target protein was 
analysed for GO function [PMID: 10802651], and 
the GO biological process with significance thresh-
old was set to P.adjust ≤ 0.01 was selected. Then, 
Cytoscape was used for a functional network map 
construction of the target protein. 

Pathway enrichment analysis was applied by 
clusterProfiler in R package (version 3.2.11). In this 
study, Fisher’s exact test was adopted to evaluate 
important pathways based on the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [20, 21].  
Pathways with a p-value less than 0.01 were de-
termined to be statistically significant. 

Protein-protein interaction network  
and module analysis 

In order to analyse the interaction between DEG- 
related proteins, the Search Tool for the Retrieval of 
Interacting Genes (STRING) database (version 10.0, 
http://www.string-db.org/) was used to obtain the 
PPI relationships [22]. The relationships whose re-
quired confidence (combined score) was greater 
than 0.4 were selected to build the network using 
Cytoscape software. Topological features such as 
degree centrality (DC), betweenness centrality (BC), 
and closeness centrality (CC) were further analysed 
using a CytoNCA plugin (version 2.1.6) [23]. Accord-
ing to the score ranking of nodes, important pro-
teins (hub protein) were identified [24]. Taking into 
account the fact that the resulting network was too 
large, the MCODE plugin (version 1.4.1) was applied 
to analyse the subnetwork of the PPI network [25]. 
Subnetworks with scores higher than 5 based on 
the default threshold (Degree Cutoff: 2, Node Score 
Cutoff: 0.2, K-Core: 2, Max. Depth: 100) were re-
tained for further analysis. Genes with the most 
links with other genes were considered to be the 
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hub genes [26], while we used a cut-off degree val-
ue range of 25–30, and combined top 5–10 ranking 
was used as the criteria to identify these hub genes 
according to previous description [27].

Target miRNA of the differentially 
expressed genes 

The miRWalk 2.0 database was applied to ac-
quire all the target miRNAs of DEGs [28]. Then,  
7 databases (miRWalk, RNA22, miRanda, Targets-
can, miRDB, miRMap, and miRBridge) were added to 
assist in predicting interactions between DEGs and 
miRNAs. According to the miRWalk 2.0 database, 
miRNAs that appeared in at least 7 databases were 
chosen as the target miRNAs. Finally, the intersec-
tion of DEGs and related miRNA was taken to ob-
tain the miRNA-mRNA regulatory relationship pairs. 
Based on the DEG and related miRNA, enrichment 
analysis was performed by clusterProfiler package.

Drug-gene interaction prediction

Potential drugs targeting key DEGs confirmed 
by network module analysis were searched using 
the drug-gene interaction database (DGIdb, http://
dgidb.genome.wustl.edu/) [29]  with the following 
values: Preset Filter: FDA Approved + Antineoplastic; 
Advanced Filters: Source Databases: FDA and Drug-
Bank; Gene categories: All; Interaction Types: All. All 
the drug-gene relationship pairs related to the pre-

dicted gene, and the regulatory miRNAs were em-
ployed to construct an miRNA-gene-drug regulatory 
network map using Cytoscape network construction 
software (version: 3.2.0, http://www.cytoscape.org/). 

Results

Identification of differentially expressed 
genes 

After normalising the raw data and transforming 
the probe ID to gene symbol, 21,655 mRNAs were 
obtained for GSE76701. DEGs were determined 
with the threshold of p-value and |log

2FC|. There 
were 489 DEGs in GSE76701, including 271 up- and 
218 down-regulated genes. Volcano plots show the 
distribution of the 489 genes in Figure 1 A. 

Bidirectional hierarchical clustering analysis

Based on the DEGs, bidirectional hierarchi-
cal clustering analysis was conducted. As shown 
in cluster heat maps (Figure 1 B), there are dis-
tinctive expressed change patterns in the HF and 
normal. DEGs further segregated the samples into  
2 distinct groups.

Functional enrichment analysis  
of differentially expressed genes

GO function enrichment analysis was performed 
to elucidate the functions of the differential mRNA. 

Figure 1. Volcano plot (A) and Heatmap (B) of DEGs between control and heart failure (HF) samples. A – exhibit the 
DEGs. X-axis: log2FC; Y-axis: the log-transformed p-values. A total of 489 differential mRNAs were divided in to 271 
up(red)- and 218 down(blue) regulated mRNAs in GSE76701. B – column on the top of the heatmap represents, 
respectively, the HF group (yellow) and the control group (blue). Upregulated and downregulated genes were re-
spectively marked in green and red
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The 271 up-regulated mRNAs were subjected to 
ClueGO analysis, and a total of 25 GO terms were 
enriched (Figure 2 A), while the pie graph shows  
7 categories of functional enrichment according to 
the Kappa coefficient (Figure 2 B).

The GO functional network diagram of upregulat-
ed genes is also shown (Figure 2 C). The 85 genes 
of the functional network were co-enriched in  
25 significant GO functional terms. The seven 
main function terms include cytokine stimulated 
response, cell response to interferon γ, response 
to oxygen levels, growth factor response, vascular 
system development regulation, positive regula-
tion of phosphoprotein phosphatase activity, and 
metal ion transport regulation.

The 218 downregulated mRNAs were also sub-
jected to clueGO analysis, and a  total of 3 GO 
terms were enriched (Figure 3 A), while the pie 
graph shows 2 categories of functional enrichment 
according to the Kappa coefficient (Figure 3 B).

The GO functional network diagram of up-
regulated genes is also shown (Figure 3 C). The  
15 genes of the functional network were co-en-
riched in 3 significant GO functional terms. The 
two main function terms include the regulation of 
inflammatory response and the positive regula-
tion of inflammatory response.

KEGG pathway enrichment analysis was also 
performed (Figure 4), and a total of 41 significant 
pathways were enriched, including 30 upregulated 
gene-enriched pathways and 11 downregulated 
gene-enriched pathways. The upregulated genes 
were mainly enriched in human cytomegalovirus 
infection, viral myocarditis, and Kaposi’s sarco-
ma-associated herpesvirus infection. The down- 
regulated genes were mainly enriched in path-
ways such as complement and coagulation cas-
cade, Staphylococcus aureus infection, and drug 
metabolism-cytochrome P450.

Protein-protein interaction network and 
module analysis of differentially expressed 
genes

In order to analyse the interaction between 
genes, STRING software was applied to establish 
the PPI network. A  total of 997 interaction pairs 
and 306 nodes were contained in the PPI network, 
with the threshold of combined score > 0.4. Based 
on the topological properties, the top 5 genes with 
the degrees higher than 28 were chosen as the 
hub genes, namely glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), calmodulin 1 (CALM1), 
matrix metallopeptidase 9 (MMP9), chemokine 
(C-C motif) ligand 5 (CCL5), and guanine nucleo-
tide-binding protein G(i) α-2 (GNAI2). After ana-
lysing the PPI network by MCODE plugin, a total 
of 16 subnetworks were obtained. Figure 5 shows 
the top 4 subnetworks with scores greater than 5. 

Cluster 1 covered 25 genes and 146 relationship 
pairs with the highest score of 12.167, including 
2 hub genes: GNAI2 and CCL5. Cluster 2, with the 
score of 7.571, also contained 2 hub genes: MMP9 
and GAPDH. CALM1 was found in cluster 4 and 
showed the highest association with others. There 
was no hub gene in cluster 3. All the hub genes 
were upregulated compared to normal samples. 

Target miRNA of the differentially 
expressed genes 

The miRWalk 2.0 database was used to predict 
the target miRNA of DEGs; as a result, 15 relation-
ship pairs appeared in at least 7 databases. After 
removing the repeats, 15 miRNAs and 9 mRNAs 
were obtained. Next, these 9 mRNA-involved path-
ways in the above analysis were screened out as 
the regulation pathway for the 15 miRNAs. A total 
of 27 pathways were screened out (Table I). 

Drug-gene interaction prediction analysis

For the drug-gene association prediction anal-
ysis, 9 drugs and 3 related genes were obtained. 
Moreover, 3 miRNAs of these 3 genes were also 
included, and the regulatory relationship network 
of drug-mRNA-miRNA was constructed (Figure 6).  
According to the drug-mRNA-miRNA network,  
FCGR2B, CCND1, and NF-κb, as well as correspond-
ing miRNA-605-5p, miRNA-147a, and miRNA-671-
5p, were identified as the drug targets of HF. 

Discussion 

Due to its high morbidity and mortality, HF has 
always been a hotspot of medical attention. Bio-
chemical markers that have been validated and 
are usually used in the diagnosis and prognosis 
of HF mainly contained B-type natriuretic peptide 
and N-terminal pro-B-type natriuretic peptide [10].  
Despite intensive study in HF pathogenesis and 
therapies, the incidence and recurrence rate re-
main high, resulting in physical  suffering and 
economic costs [15]. Therefore, a  lot of evidence 
indicates that novel gene and molecules play an 
important role in the cardiovascular system and 
provide a new perspective into the pathophysiolo-
gy as well as pharmacological targets of HF. Anal-
ysis of DEG of HF has been widely used to reveal 
the potential pathogenesis, which also enabled 
the extraction of targets for therapeutic strate-
gies [30, 31]. Furthermore, Hu et al. identified key 
proteins and lncRNAs in hypertrophic cardiomyop-
athy based on integrated network analysis [32].  
In the present study, gene expression profiles 
were analysed by means of bioinformatics, includ-
ing function and pathway enrichment, PPI, and 
drug-mRNA-miRNA interaction networks. Accord-
ing to the results of mRNA profiles, a total of 489 
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graph. The number on the right side of the bar shows the number of related genes enriched in the relevant GO function 
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DEGs were verified between HF and control, which 
mainly enriched in type I interferon and leukocyte 
migration according to molecular function. Signifi-
cantly increased levels of GAPDH, GALM1, MMP9, 
CCL5, and GNAL2 were found in the HF setting 
and were identified as the hub genes based on 
the PPI network. Furthermore, according to the 
drug-mRNA-miRNA network, FCGR2B, CCND1, and 
NF-κb, as well as corresponding miRNA-605-5p, 
miRNA-147a, and miRNA-671-5p, were identified 
as the drug targets of HF. 

Matrix metallopeptidase 9 (MMP-9) is an en-
zyme that belongs to the  zinc-metalloprotein-
ase  family, taking part in the degradation of 
the  extracellular matrix. It is known that MMPs 
are closely related to left ventricular function af-
ter myocardial infarction, and the activity of MMPs 
tends to cause endocardial endothelial-myocyte 
disconnection, thereby resulting in myocardial 
contractile dysfunction [33]. In MMP-9 knockout 
HF mice, attenuated myocardial contractile dys-

function was observed [34]. Moreover, by monitor-
ing of the plasma levels of MMPs, individuals with 
high levels of MMP-9 expression appeared to have 
a major risk of developing congestive HF [35]. Fur-
thermore, reduced cardiac MMP-9 level was found 
in ischaemic HF mice (left coronary artery perma-
nent ligature) treated with a  neutralising CCL5 
monoclonal antibody, and a shrink infarct size was 
confirmed [36]. Consistent with the above reports, 
herein we found that the MMP9 and CCL5 were 
significantly upregulated compare with controls. 

Furthermore, in recently published study, Wang 
et al. [37] analysed the gene expression profile 
GSE57338 involving 117 ischaemic cardiomyopa-
thic HF and 136 control samples with various bioin-
formatics approaches. The DEGs were categorised 
by several relationships, such as interferon regu-
latory factor 1 (IRF1)-CCL5, which were revealed 
in the transcription factor microRNA target gene 
regulatory network. Wang et al. also stated that 
CCL5 may participate in HF progression via protein 
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Figure 5. Sub-PPI network constructed from differential mRNA from GSE76701. Cluster 1 contains 25 genes and 
146 edges with a score of 12.167; cluster 2 contains 15 genes and 53 edges with a score of 7.571; cluster 3 con-
tains 7 genes and 21 edges with a score of 7; cluster 4 contains 15 genes and 43 edges with a score of 6.143. Pink 
represents upregulation, green represents downregulation. The size of the circle represents the degree of associa-
tion of the node genes. The larger the dot, the greater the degree of genetic association

Cluster 1 Cluster 2

Cluster 4
Cluster 3

ubiquitination and CCL5 may participate in HF via 
IRF1-CCL5 interaction. Herein, we also found that 
CCL5 might be implicated in the progression of HF, 
which is consistent with the study by Wang et al.

In HF-related literature, Gapdh was the most 
frequently used reference gene in quantification 
of gene expression [38, 39]. Based on the geNorm 
and Normfinder algorithms, the most stable ref-
erence genes between HF and control tissues of 
mouse, rat, and human were Rpl32 and Polr2a, 
rather than Gapdh [40]. In our study, there was 
a significant difference in the expression of Gapdh 
between HF and the normal group. Ca2+ is argu-
ably the most important second messenger in car-
diac muscle, and the changes in the intracellular 
Ca2+ concentration have both acute and chronic 
effects on cardiac function. Ca2+/calmodulin-de-
pendent protein plays an important role in cardiac 
hypertrophy and HF [41]. Many mutation sites of 
CALM1 have been reported to be associated with 
HF. For example, chronic heart failure (CHF) in pa-
tients carrying the CC genotype of rs3814843 on 
the CALM1 gene had greater risk of sudden cardi-

ac death and all cause death [42]. A mutation in 
CALM1 (p.Phe90Leu) encoding calmodulin causes 
sudden cardiac death in childhood and adoles-
cence [43]. However, the change in the expression 
of CALM1 has not been specifically reported. 

Moreover, miRNAs could regulate gene expres-
sion at the post-transcriptional level [44]. Function-
al miRNA studies revealed that many miRNAs had 
a great impact on the pathological mechanism re-
lated to HF, such as vascular remodelling, cardiac 
fibrosis, and hypertrophy [45]. Based on the global 
miRNA profile of ventricles of HF mice, decreased 
expression of miR-1 and miR-133a induced upreg-
ulation of target genes, resulting in cardiac hyper-
trophy. Also, a large number of miRNAs appeared to 
have an upregulated pattern in different stages of 
HF [46]. By analysing the circulating miRNAs of 39 
normal control, 30 HF, and 20 dyspnoeic patients, 
miR-423-5p was especially accumulated in HF and 
determined as a strong diagnostic biomarker of HF, 
with an area under the receiver operator character-
istics (ROC) curve of 0.91 [47]. Actually, the relation-
ships of differentially expressed miRNA and aetiolo-
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Table I. Targeted miRNAs were mainly enriched in 27 Kyoto Encyclopedia of Genes and Genomes pathways

No. Cluster ID Description Gene- 
ratio

BgRatio P-value p-adjust q-value Count

1 Up hsa05163 Human cytomegalovirus 
infection

0.104478 225/7847 2.74E-05 2.74E-05 0.003388 14

2 Up hsa05416 Viral myocarditis 0.052239 59/7847 5.89E-05 5.89E-05 0.003388 7

3 Up hsa05167 Kaposi sarcoma-
associated herpesvirus 

infection

0.089552 186/7847 7.46E-05 7.46E-05 0.003388 12

4 Up hsa05166 Human T-cell leukemia 
virus 1 infection

0.097015 219/7847 8.74E-05 8.74E-05 0.003388 13

5 Up hsa04062 Chemokine signaling 
pathway

0.089552 190/7847 9.16E-05 9.16E-05 0.003388 12

6 Up hsa04371 Apelin signaling 
pathway

0.074627 137/7847 0.00011 0.00011 0.003388 10

7 Up hsa05165 Human papillomavirus 
infection

0.119403 330/7847 0.000148 0.000148 0.003906 16

8 Up hsa04218 Cellular senescence 0.074627 160/7847 0.00039 0.00039 0.008854 10

11 Up hsa05169 Epstein-Barr virus 
infection

0.08209 201/7847 0.000622 0.000622 0.010472 11

13 Up hsa04933 AGE-RAGE signaling 
pathway in diabetic 

complications

0.052239 100/7847 0.001549 0.001549 0.022082 7

16 Up hsa04151 PI3K-Akt signaling 
pathway

0.104478 354/7847 0.002791 0.002791 0.032315 14

17 Up hsa05170 Human 
immunodeficiency virus 

1 infection

0.074627 212/7847 0.003309 0.003309 0.036059 10

18 Up hsa05032 Morphine addiction 0.044776 91/7847 0.004511 0.004511 0.046428 6

19 Up hsa04934 Cushing syndrome 0.059701 155/7847 0.004935 0.004935 0.04812 8

20 Up hsa05215 Prostate cancer 0.044776 97/7847 0.006156 0.006156 0.051841 6

21 Up hsa04014 Ras signaling pathway 0.074627 232/7847 0.006233 0.006233 0.051841 10

22 Up hsa04924 Renin secretion 0.037313 69/7847 0.00632 0.00632 0.051841 5

23 Up hsa04926 Relaxin signaling 
pathway

0.052239 130/7847 0.006712 0.006712 0.051841 7

25 Up hsa05203 Viral carcinogenesis 0.067164 201/7847 0.007343 0.007343 0.051841 9

26 Up hsa04916 Melanogenesis 0.044776 101/7847 0.007471 0.007471 0.051841 6

27 Up hsa04976 Bile secretion 0.037313 72/7847 0.007555 0.007555 0.051841 5

28 Up hsa04971 Gastric acid secretion 0.037313 75/7847 0.00895 0.00895 0.059028 5

29 Up hsa05220 Chronic myeloid 
leukemia

0.037313 76/7847 0.009452 0.009452 0.059028 5

30 Up hsa05418 Fluid shear stress and 
atherosclerosis

0.052239 139/7847 0.009558 0.009558 0.059028 7

31 Down hsa04610 Complement and 
coagulation cascades

0.093023 79/7847 2.07E-06 2.07E-06 0.000341 8

32 Down hsa05150 Staphylococcus aureus 
infection

0.069767 68/7847 9.24E-05 9.24E-05 0.007583 6

37 Down hsa05152 Tuberculosis 0.081395 179/7847 0.003372 0.003372 0.079104 7

gy of HF have been validated by abundant literature 
in larger patient groups [48–50]. We found herein 
that miRNA-147a could be an interacted miRNA 
for HF prediction. According to a  previous study 
[51], miRNA-147a was involved in the macrophage 
activation during the pathogenesis process of isch-

aemia heart disease; therefore, the cardiac-related 
miR-147a is somehow consistent with our obtained 
results. For miR-671-5p, Wong et al. [52] recently 
identified that miR-671-5p and another 7 miRNAs 
could distinguish HF from healthy controls, which 
is consistent with our study. However, there is no 
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Figure 6. Drug-Gene-miRNA Relationship Network. The green triangle represents the miRNA, the red dot represents 
the gene, and the blue square represents the drug

report on the role of miRNA-605-5p on the HF, which 
gave us a new enlightenment for HF study.

In conclusion, taken together, our results in-
dicated that hub genes GAPDH, GALM1, MMP9, 
CCL5, and GNAL2 were significantly increased in 
HF. miRNA-605-5p, miRNA-147a, and miRNA-671-
5p were predicted as the drug target-interacted 
gene-miRNA of HF.
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